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Abstract 

We study the relative ability of several models of the X-ray absorption spectrum to 

capture the Franck-Condon structure apparent from an experiment on gaseous nitrogen. In doing 

so, we adopt the Born-Oppenheimer approximation and a constrained density functional theory 

method for computing the energies of the X-ray-excited molecule. Starting from an otherwise 

classical model for the spectrum, we systematically introduce more realistic physics, first by 

substituting the quantum mechanical nuclear radial density in the bond separation R for the 

classical radial density, then by adding the effect of zero-point energy and other level shifts, and 

finally by including explicit rovibrational quantization of both the ground and excited states. The 

quantization is determined exactly, using a discrete variable representation. We show that the 

NEXAFS spectrum can be predicted semiquantiatively within this framework. We also address 

the possibility of non-trivial temperature dependence in the spectrum. Finally, we show  that it is 

possible to improve the predicted spectrum by using constrained DFT in combination with more 

accurate potentials.  

 

Keywords  - Nitrogen, Gas phase, XANES, Herzberg-Teller, Franck-Condon 



3 

Introduction   

Core-level spectroscopies are unique and powerful atom-specific probes of molecular 

interactions via both occupied and unoccupied electronic states.
1
 As methods involving X-ray 

absorption (e.g., XAS, NEXAFS, XANES) mature, spectra are being measured for complex 

systems including proteins, DNA, large organic molecules and polymers.
2,3

 Even for simple 

systems, however, interpretation of these spectra with regard to their molecular origin is limited 

by the fact that comparisons must be made to theoretical calculations that are difficult to bring 

within the range of accuracy achievable experimentally. Indeed, the accurate description of an 

absorption event of several hundred electron-volts (eV) of energy is an ongoing challenge in 

theoretical chemistry. Our work indicates that these calculations are sensitive to molecular 

geometries, which can affect both the spectral intensity and shape; therefore, in addition to an 

accurate theoretical formalism to describe the spectroscopy, molecular geometries and their 

thermal fluctuations must be sampled properly from a quantum distribution.
4,5

 In this work we 

focus on nitrogen gas (N2), a system which has been studied extensively.
6-14

 As a consequence of 

choosing a simple, relatively well-understood molecular system, we are able to describe the 

importance of these nuclear quantum effects in NEXAFS and directly determine the appropriate 

broadening.   

In calculating the gas-phase NEXAFS spectrum, a discrete set of transition energies and 

associated intensities is generated; this “stick spectrum” can then be broadened to match 

experiment.
5,15

 Broadening is attributed to a combination of lifetime effects – energetic smearing 

of the molecular states due to the energy-time uncertainty principle -- and experimental sources 

such as a finite monochromator width.
1
 There appears to be no consensus in the literature as to 

how much broadening to apply to a spectrum once calculated, as a variety of linewidth schemes 
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are often used.
5,15

 In the past, based on experimental fitting of the nitrogen spectrum to a Voigt 

line shape – a convolution of the Lorentzian and Gaussian profiles associated with lifetime and 

instrument broadening that is often approximated as their linear combination -- the width was 

determined to be approximately 120 meV FWHM (full width at half maximum) Lorentzian 

broadening and an experiment-dependent amount of Gaussian broadening.
6-14

 Because the Voigt 

profile does not support a unique partition into contributions from Lorentzian and Gaussian 

broadening, many choices of these widths may yield a similar spectrum. Previous work by 

Coville and Thomas determined lifetimes for a variety of species by calculating Auger rates 

using semiempirical electronic structure methods; the broadening for N2 was reported as 120 

meV.
16

 Fitting to a recent high-resolution experiment lead to an estimate of the lifetime 

broadening of 115 meV.
14

  

We have taken a different approach to the problem of determining lifetime broadening; we 

sample the molecular geometries and compute transition energies and intensities essentially 

exactly – within the limitations of the electronic structure method used to determine the excited 

state energy curve -- and then apply broadening to match the experiment. (In doing so, we 

account for quantum statistical effects for the nuclei – those effects due to quantization of 

nuclear motion on the electronic potential energy curve and, thus, the populations of the various 

nuclear states in the ensemble.) The choice of widths that best fits the experimental data 

determines the appropriate lifetime broadening. This approach mirrors the procedure typically 

used for calculating spectra, but as a result of the accuracy of our methods, we can determine the 

“exact” broadening associated with a given set of approximations. We examine a hierarchy of 

approximations, starting with the full analytical classical configurational distribution combined 

with classical transitions between the ground and excited state curves and ending with an exact 
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treatment (within the Born-Oppenheimer approximation) of Franck-Condon transitions between 

rovibrational levels on the quantized electronic curves. In the literature, many have instead 

calculated spectra using a single molecular configuration – typically the optimized geometry 

from an electronic structure calculation -- or from a variety of configurations generated either by 

(1) optimizing conformer geometries or by (2) sampling from classical or path integral molecular 

dynamics simulations. Common practice has also been to treat transitions only at the classical 

level.   

There is nevertheless a substantial body of work regarding the calculation of Franck-Condon 

factors for small molecules undergoing NEXAFS excitation.
17-26

 The most common approach in 

these studies is to calculate the minimum ground state energy, the associated Hessian, and the 

equilibrium position of the excited state.  Then it is assumed that the excited state motion is 

characterized by the normal modes.
23-25

 A linear-coupling approximation is made, and the 

Franck-Condon factors may be calculated explicitly or assumed to adhere to a Poisson 

distribution. (Previous studies indicate that this choice yields only minor differences in the 

results.)
20

  However, none of these studies quantizes the rotational states, as we do here. 

These detailed studies have often used higher-level electronic structure methods than DFT  

and have involved explicit calculations of the vibrational modes of both the ground and excited 

state. 
17-26

 The molecules studied are relatively complex compared to N2 and therefore provide a 

more challenging test for prediction of the spectrum. At the same time, because of the large 

number of modes present in these systems, there is typically much less spectral detail over a 

given range of energy. Even so, and in spite of the rigor of such a treatment, the spectra are 

captured only semiquantitatively, with obvious disparities (in both peak location and height) in 

those regions of the spectrum where fine structure is most prominent. (Agreement with less-
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detailed spectral features is, in any case, more difficult to judge.) We show in this paper that we 

can predict the spectrum comparably well with respect to these fine spectral details using a 

simpler approach, albeit for a far simpler system, N2. The simplicity of the N2 molecule should 

make for a more stringent test, as its entire first X-ray transition can be construed as consisting of 

“fine structure.”  

1. Computational Methods 

Density Functional Theory Calculations 

Some of the present authors have shown previously that density functional theory 

(DFT)
27,28

 can accurately reproduce relative excitation energies associated with core-level 

spectroscopy via total energy differences (ΔSCF or ΔKS).
23

 We use this property of the theory to 

our advantage in modeling the core hole formed by absorption of an X-ray photon: We represent 

the lowest-energy core-level excited state self-consistently, with a full core hole in the excited 

atom’s electronic structure and an associated excited electron.
29

 

  We refer readers to our earlier work for a detailed description of the electronic structure 

calculations.
5
  A brief summary is as follows: We calculate the X-ray absorption cross section to 

first order using Fermi’s golden rule,  

)(||4)( 2

0

2     

f

iffi EEM  

where  is the energy of the incident photon, which should match the difference in energy 

between the final and initial states if EE  ; 0  is the fine structure constant; and the fiM   are 

transition amplitudes between initial and final states.  We use the PBE form of the generalized 

gradient approximation to the exchange-correlation potential.
30

  For X-ray core-hole excitations 

at the nitrogen K-edge, the initial state is fixed to the s1  atomic eigenstate of nitrogen; the 

corresponding molecular state is the ground state, 
 gX 1

. We adopt a plane-wave representation 
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and pseudopotential approximation for valence electronic structure. In all of our calculations we 

use norm-conserving pseudopotentials with a numerically converged plane-wave cut-off of 85 

Ry.  

To approximate the electronic final state within our Fermi’s golden rule expression we use 

constrained density functional theory. In this approach, the pseudopotential of the core-excited 

atom is replaced by another pseudopotential with explicit treatment of the core excitation – for 

nitrogen, we use the electronic configuration 
421 221 pss . When incorporated into the N2 

molecule, this configuration corresponds to a degenerate pair of dipole-active molecular excited 

states with term symbol u1  (as well as a spin-forbidden state with term symbol u

3 ). We 

account for screening of the core hole by explicit inclusion of the excited electron. The atomic 

nuclei remain fixed in place, as they will not move appreciably on the attosecond time scale the 

absorption event (i.e., we adopt the Born-Oppenheimer approximation). The resulting 

constrained-DFT ground state of this excited-state configuration is well-defined and 

approximates the lowest-energy core-excited state. This state is the only one relevant for treating 

the first transition in the N2 NEXAFS spectrum which may be characterized as LUMO1 s .
14

  

The use of plane-wave basis sets to model the electronic structure of isolated molecules 

requires the use of periodic boundary conditions. Large box sizes ((15Å)
3
) are used to reduce 

spurious interactions between cells. Transition amplitudes are then estimated in the single-

particle and dipole approximations. The spectra thus obtained were aligned to the experimental 

ionization potential of 409.93 eV as detailed in previous work.
5,6

 

Molecular Sampling of DFT Calculations 

Over 800 nitrogen transitions were calculated at separation distances sampled from a 

path-integral molecular dynamics simulation, with special attention paid to configurations lying 
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in the ground-state potential well. Variations in the transition probability were monitored and 

observed to remain within 1% of the intensity at equilibrium separation. This result indicates that 

the transition dipole moment is insensitive to the internuclear spacing as well, and, therefore, 

Herzberg-Teller effects may be neglected.
5
 In other words, we are safely within the Franck-

Condon regime. 

Spectral Models for Classical-to-Classical Transitions 

Figure 1 depicts schematically the types of transition considered. The leftmost (green) 

arrow depicts a vertical excitation at bond length R from the bottom of the ground state potential 

Vg(R) to the bottom of the excited state potential Vx(R). This type of transition may be termed 

“classical,” in the sense that we treat all such excitations as being allowed with equal (unit) 

probability; the structure of a spectrum based on these transitions is determined by the 

(canonical) classical radial density of the ground state. (“Density” and “radial density” will be 

used throughout this work and will always denote the nuclear radial probability distribution.) We 

treat the spectrum as a set of intensities continuous in the transition energy and determined solely 

by the relation 

);());((  RREI CLCL   

where )()()( RVRVRE gXCL   is the transition energy, 
)(1

);(
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ge

Q
R



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 is the density, 





)(

d
RVgreQ


is the associated partition function, and the semicolon indicates that the 

temperature dependence (included through the inverse thermal energy 
TkB

1
  ) enters only 

parametrically. 

In previous work,
5
 another model has also been used that incorporates the quantum 

mechanical density but leaves the transition energy in classical form: 
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);());((  RREI CL   

Although this model is inconsistent from a physical point of view, so too is any mixture of 

quantum and classical energetics. We address it here for the sake of emphasizing the relation 

between our work and its antecedents, and also because it is readily calculable even for large 

systems and, therefore, of pragmatic interest.  

A Spectral Model for Quantum-to-Classical Transitions 

The second class of transition, depicted by the center (blue) arrows, is distinguished from 

the first by (vibrational or rovibrational) quantization of the ground state; here the transition is 

from a state vJ  on the ground state potential energy curve to a classical excited state. (ΔE(R) 

for this type of excitation will therefore be smaller than for the analogous classical transition.) 

Because the excited state remains classical, all such transitions are still allowed, and the model 

for the spectrum remains formally the same: 

);());((  RREI   

The density is now quantum mechanical: 



2

)()(
1

);( ReJg
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E
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J





   , where )(RJ  

is the radial wavefunction for state vJ , 


 JE

NJ eJgZ 

 )( is the quantum canonical partition 

function, )(JgN  is the rotational degeneracy (which we will address in more detail below), and 

the transition energy now depends on the thermal average of the quantized energies, 

J

E

NJJ EeJg
Z

E J









 )(

1
, as ΔE(R) = Vx(R) - <EνJ>.  

 The rotational degeneracy )(JgN  is distinguished from the usual degeneracy factor g(J) 

= 2J + 1 in that it also accounts for the nuclear spin statistics of the N2 molecule: The 
14

N 

nucleus is a boson with spin I = 1, and as a result the total wavefunction must be symmetric with 
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respect to exchange of the nuclei. To impose this condition is equivalent to requiring that 

antisymmetric nuclear spin states be paired with symmetric (even J) rotational states -- and vice 

versa for symmetric nuclear spin states and antisymmetric (odd J) rotational states.
31

  There are a 

total of 9 symmetrized combinations of the two nuclear spins, leading to a 2:1 ratio of symmetric 

to antisymmetric spin states. Thus, for every three molecules of N2, two will be orthonitrogen 

(supporting only even J) and one will be paranitrogen (supporting only odd J). The combined 

rotational/nuclear-spin degeneracy must then be 

)12(2)(  JJgN , J even 

12)(  JJgN , J odd 

The Franck-Condon Spectral Model for Fully Quantum Transitions 

 The third class of transition, shown as the set of four (red) arrows at right in Figure 1, is 

simply that of Franck-Condon transitions between (ro)vibrational states on the ground potential 

energy curve and (ro)vibrational states on the excited state potential energy curve. The 

probability of transition at given R is no longer uniform, and the density is therefore an 

inappropriate quantity for use in determining the spectrum. Since the Herzberg-Teller effect is 

apparently of little importance for this system -- and, therefore, the electronic transition dipole 

moment will be roughly constant, falling within the framework of the Franck-Condon 

approximation -- we now model the spectrum as deriving from all symmetry-allowed ground-to-

excited-state transitions '' JvJ  .  

 We assume that both the ground and excited state fall under Hund’s case (a) for coupling 

between the spin and orbital angular momenta, which consists of weak coupling of electronic 

and nuclear motions and strong coupling of the spin and orbital motion to the internuclear axis.
31

 

The ground state X
 g

1
has angular momentum around the internuclear axis Ω = |Λ + Σ| = 0,  
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where Λ is the maximum projection of the orbital angular momentum (corresponding to the 

Greek letter in the term symbol for the state) and Σ is the appropriate projection of the spin 

angular momentum. The excited state u

1  has Ω = 1, fulfilling the ΔΩ = 0, ±1 selection rule for 

the electronic transition; further, all rotational transitions with ΔJ = 0,±1 are allowed. (This latter 

rule always holds, of course, but the ΔJ = 0 case is forbidden for ΔΩ = 0.) Note also that, since J 

is bounded from below by Ω, there is no J = 0 rotational state on the excited electronic surface.
31

 

These transitions are treated as occurring in proportions set by the relative thermal 

population of the state vJ  with respect to the ground state 00 , i.e., with probability 

00)(
1

)( JE

NJ eJg
Z

P 

 


 , where JJJJ EEE   ''' . These considerations yield the standard 

spectral model 

 
JJ

JJ JEEEI
''

'' '(|)();(


  )('')1|  JPJJJ   

where the first Kronecker deltra restricts ΔE to those values supported by the ground and excited 

state energies, the second Kronecker delta enforces the rotational selection rule, and 

)()(d'' *

'' RRRJJ JJ    is the Franck-Condon factor (overlap integral) for the transition. 

Hereafter, ν’ and J’ will be used to refer to quantum numbers for states on the excited potential 

energy curve and ν and J to those for states on the ground potential energy curve. 

The Ground and Excited State Potentials and Fits 

 Our initial calculations of the nitrogen X-ray absorptions were for values of R centered in 

the ground state potential well; this is also true for the excited-state potential, which is displaced 

by only 05.0 Å at equilibrium. In order to capture nuclear quantum effects, however, the 

geometry of the potential away from the minimum may be important; for example, 

anharmonicity at larger values of R will affect the nuclear vibrational frequencies.  
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We avoided sampling the electronic structure energies on an infeasibly dense grid in the 

radial coordinate by adding a small number of points at an even spacing of 0.1Å. These points 

span the entire range of physically-relevant bond separations, from well into the repulsive barrier 

region (0.1Å) to near the dissociation threshold (4.7Å for the ground state and 3.4Å for the 

excited state). The complete set of points was then used to develop a 14-Gaussian fitting function 

of form  




e

b

cR

ii VeaRV i

i 2)(

)( for each curve, where eV  is the energy at the well minimum 

and {ai, bi, ci} are the fit parameters.  

The resulting ground- and excited-state potential fits are shown in Figures 2 and 3, 

respectively; they are paired for the purpose of comparison with potentials obtained by  fitting to 

experimental data.
6,32,33

 Although our potential fits are in good agreement with the 

experimentally-derived curves in the well region, the dissociation energies are several eV too 

large, indicating the over-binding commonly observed for DFT.
36

 Additionally, the multi-

Gaussian functional form does not allow for reliable prediction of the electronic energy outside 

of the fitting regions, but this is not an important failing. The states of interest to us here are deep 

within the well, at energies no higher than 0.435 eV for the ground and 404 eV for the excited 

state (vide infra for discussion of the physical relevance of these energies). 

The Classical Density 

The classical radial density for the (rotationless) ground state at 300K was determined 

analytically. It is very nearly Gaussian, with slight enhancement for values of R greater than the 

most-probable bond separation and slight diminishment for smaller values of R. The uneven 

distortion with respect to a Gaussian is due to the shape of the potential, which allows for more 

frequent visits to the large-R region than to the small-R region at 300 K. To determine the 
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classical canonical density at 0K is trivial; the particle is at a standstill, sitting at the bottom of 

the potential well.  As such, it is a δ-function centered at the ground state equilibrium position. 

Computing the Quantum Densities: The Colbert-Miller DVR 

 In determining the quantum densities, it is important that the wavefunctions required can 

be obtained simply and straightforwardly and that they be of high quality. As such, we opted to 

use the DVR of Colbert and Miller, which we will briefly review here (in its radial version).
35

 

 As do other DVRs, the Colbert-Miller method involves setting up a grid representation of 

the Hamiltonian 


H  = )(
2

2




 RV
p


 of the system, with μ the reduced mass. In this case, the grid 

falls in the coordinate range ),0(  . Because the potential )(


RV is a function only of the position 

operator, its matrix representation in the basis of grid points {Ri} is trivial, Vij = δijV(Ri), and the 

challenge lies in determining the representation of the kinetic energy operator. Colbert and Miller 

show that there is a specific representation that is independent of any choice of basis functions 

for the grid: 
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where ΔR is the grid spacing and Ri = iΔR for }.....,1{ i . 

 They also show that the wavefunction associated with each grid point may be written as 
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consequently, the eigenvectors obtained from the diagonalization of the Hamiltonian matrix H = 

T + V may be expressed as a linear combination of the grid wavefunctions,  jijij Rc , 

that is evaluable for all R. Since we are concerned here with computing densities and Franck-

Condon factors, obtaining a smooth wavefunction that may be evaluated everywhere in space is 

not just reason for satisfaction; it brings us nearer to the spirit of the analytical theory. 

 Three parameters are varied in bringing the Colbert-Miller DVR to convergence: the grid 

spacing ΔR, the maximum value of the position Rmax = imaxΔR, and a cut-off energy Vc  The latter 

allows for a simple form of adaptive grid, in which no grid points are placed where V(Ri) > Vc. 

An intuitive choice of cut-off energy is the dissociation energy for the curve in question, and Vc 

for the excited state potential was set accordingly. The analogous choice for the ground state 

would be inappropriate; the potential fit was ill-behaved when points at 0.8Å and smaller were 

included, and so the potential would not be represented as bound with such a choice for Vc. The 

well is nevertheless sufficiently deep that Vc eV 7.10 is compatible with convergence of the 

densities. Similarly, we wanted to allow for leakage of wavefunction amplitude via tunneling to 

as large a value of R as physically meaningful, and so we set Rmax to values well into the 

classically-forbidden region for each curve; 1.5Å and 3.5 Å sufficed for the ground- and excited-

state potentials, respectively. Finally, we found the point of convergence in ΔR by examining the 

energies of the rovibrational states and a few simple properties, such as canonical averages of the 

position and momentum, their uncertainties, and the kinetic and potential energies. Our working 

values were chosen to be roughly 3 times smaller, in order to guard against any residual 

distortion of the computed wavefunctions with respect to their exact counterparts, and we tested 

for overall convergence by varying Vc and Rmax. In the end, ΔR = 0.003Å and ΔR = 0.0125Å 

were chosen for the ground and excited states. This choice is equivalent to having chosen 199 
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and 203 grid points for the rotationless ground and excited states, respectively; only a few points 

are lost to the cut-off as J increases. We validated our calculations by comparison of the DVR 

energies for the ground state to those given by a Dunham expansion due to Le Roy et al. 
33

; they 

were found to be in excellent -- although, as expected, not exact -- agreement.  

The Quantum Densities 

Once the DVR for the ground state was converged, obtaining the canonical density was a 

simple matter. A single DVR calculation accounts for contributions to the density from all J , 

with J fixed and included as part of the centrifugal potential; we needed only to perform as many 

calculations as values of J we wished to include in the average. As such, we chose an arbitrary 

cut-off in the rotational quantum number, Jc. The condition imposed is that the relative 

population in cJ0  be of order 10
-5

 or smaller compared to that in max0J  where Jmax is that J 

for which the population factor P0J(β) is largest. For T = 300K, we found the appropriate choices 

to be Jmax = 8 and Jc = 34.  At T = 0K, of course, Jmax and Jc are both rigorously 0; however, 

nuclear spin selection rules prevent conversion of paranitrogen to orthonitrogen under typical 

laboratory conditions.
31

  As a result, there will initially be a 2:1 ratio of molecules in J = 0 and J 

= 1, respectively, after a quench from room temperature.  

With the canonical densities );(  RJ  in hand, we constructed the total density );(  R  

by taking their weighted average with respect to the populations of the J0 . (This is a very 

minor approximation at 300K, since even the largest relative contribution from the J1  states is 

7 times smaller than that for cJ0 . At 0K, it is no approximation at all.) That is, 


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where the partition function ratio ensures a normalized average and 
JE

N

J

Jc eJgZ c 0)(0



  

is the appropriately restricted partition function. 

 As was true in the classical case, the quantum density is very nearly Gaussian; the 

distinction is that it is significantly broader due to tunneling into the classically-forbidden 

regions on either side of the well. Because there is little change in the density between states with 

low values of J, the two distinct 0K scenarios are essentially indistinguishable at this level of 

approximation.  

Classical and Quantum-Classical Spectral Calculations  

For the first class of transitions shown in Fig. 1A (and the corresponding spectral 

models), densities dictate the intensity of the X-ray absorption for specified values of R. The 

associated transition energies are simply the energy differences between the fitted ground- and 

excited-state potentials. The resulting spectra were binned in the transition energy to the nearest 

meV for convenience in plotting and (more importantly) so that spectral degeneracy would be 

properly reflected. 

 Upon quantizing the ground state, transitions to the classical excited state are made 

almost exclusively from ν = 0, with rotational levels populated commensurate with the 

temperature. The resulting minimum transition energy, which includes contributions from the 

zero-point energy of the ground state, will therefore be lower than for the analogous classical 

transition.   

Franck-Condon Spectral Calculations 

The Franck-Condon spectral calculation was carried out for the same set of states J  as 

in the ground state density calculations. Based on the number of peaks in the experimental 

spectrum, we chose to include those states on the fitted excited state potential with };6,....0{'  
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the range of rotational quantum number chosen was },34,....1{'J determined by choosing the 

excited state rotational cut-off value '

cJ  to be that for which '0 cJ
E  first appreciably exceeds E10.  

This criterion was used in part for convenience and in part to ensure that a reasonable spread of 

transition energies would be covered by our calculation. Franck-Condon factors JJ  ''  were 

then computed numerically from the DVR wavefunctions and scaled by the population factor 

)(J . The spectrum was constructed by combining the results of these calculations and 

applying an additional scale factor such that the height of the first peak in the computed spectrum 

matches that from the experiment; this latter scaling may be interpreted as incorporating the 

magnitude of the electronic transition dipole moment, which we have not calculated explicitly 

for every R. 

3.  Results and Discussion 

Figure 4 is a direct comparison to experiment of our results for the spectra arising from 

purely classical transitions; we have shifted all of our spectra, irrespective of the model used to 

obtain them, to align energetically with the experimental spectrum of Yates et al.
14

 In panel (A), 

the classical density is used, and, much as one would expect, the result is a near-Gaussian 

spectrum lacking any non-trivial structure. (In the 0K limit, the spectrum is essentially a δ-

function, though obviously not of infinite intensity.) We discuss this simplest model here in order 

to help establish what relevant features of the spectrum become apparent at which level of 

approximation.  

When the quantum densities are used instead, as in panel (B) of Figure 4, the absorption 

profile broadens substantially, and the (now comparatively small) maximum shifts by 42 meV. 

Of greater interest is that the spectrum using this model is almost completely temperature 

invariant; because only the lowest vibrational level is appreciably populated, and because the 
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densities of the various rotational modes are practically identical, the overall ground state density 

– and, thus, the spectrum -- does not change significantly between 300K and 0K. (This near-

complete insensitivity to lowered temperatures holds for all of our quantized spectra; we address 

the question of higher temperatures in the context of our conclusions.) In other words, tunneling 

spreads the density over a wider range of R, as it must, but no model neglecting the quantum 

energetics will contain any additional structure. Unsurprisingly, one must (at the very least) 

quantize the ground state.  

The results of the ground-state quantization and subsequent application of the second 

spectral model are shown in Figure 5. The spectrum calculated at 0K displays a single peak with 

very sharp onset and then a broader decay. The speed of the onset is due to the fact that all 

transitions now originate either from a pair of states spaced within -1cm 4   (after a quench from 

room temperature) or from the ground state alone (at thermal equilibrium); further, the small 

displacement of the electronic potential minima (  0.05  Å) will result in many transitions to the 

relatively flat bottom of the excited-state well. At 300K the ground state rotational energies are 

no longer (essentially) completely degenerate, leading to a weaker onset and a broader decay; 

that is, the finite-temperature rotational statistics of the ground state directly result in broadening 

of the spectrum. There is also an interesting additional feature: Because the rotational 

progression now spans a wider range of energies and values of J, the nuclear spin statistics are 

directly observable as a series of narrowly-spaced peaks corresponding to transitions from even-J 

states. This “ragged onset” is an artifact of the questionably-physical quantum-classical spectral 

model, and it would be observed in some form irrespective of the shape of the excited potential 

curve. 
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As we have seen, quantization of the ground state results in a sharp Franck-Condon-like 

peak. It is clear, however, that an accurate representation of the Franck-Condon structure of the 

experimental spectrum requires that the excited state be quantized as well.  

We begin by quantizing both states only vibrationally, yielding the stick spectrum shown 

in light blue in Figure 6(A). (There is essentially no difference between a 0K and 300K spectrum 

in this picture owing to the minimal change in thermal population for ν = 1.) Because the pure 

vibrational transitions (to a good approximation) set the positions of the peaks, this model is 

effectively that used in fitting experimental spectra, with the peak locations and the Lorentzian 

and Gaussian widths contributing to the Voigt lineshape used as fitting parameters.  

When our spectrum is broadened using the widths Yates et al. determined by such a 

fitting procedure – 132 meV overall broadening, with 115 meV FWHM Lorentzian and 38.4 

meV FWHM Gaussian -- the purple line is obtained.
14

 We note that we have adopted the 

Gaussian broadening reported by Yates et al. as a reasonable value for the instrument 

broadening, since it cannot be determined a priori. Owing to the non-uniqueness of the 

Lorentzian/Gaussian decomposition of the Voigt profile, this choice is merely an example, if a 

well-justified one. 

Although the first peak is shifted such that its maximum is aligned with the experiment – 

and, thus, its location is immaterial in determining the quality of the predicted spectrum -- its 

width matches the experiment quite well. As ν’ increases, our peaks are displaced progressively 

higher in transition energy from their experimental locations, and their heights do not decay 

sufficiently quickly for ν’ > 2. We must stress, however, that we have arrived at these results by 

constructing the spectrum literally “from the ground state up,” while the experimental 
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broadening figures are determined by fitting. As such, we find the agreement to be a striking 

confirmation of the robustness of our approach. 

Although rotational transitions cannot be resolved spectroscopically, we thought it 

worthwhile to estimate the associated contribution to broadening of the spectrum. Results of the 

rovibrational Franck-Condon spectral calculation are shown at 300K in Figure 6(B) and at 0K in 

Figure 6(C), with stick spectra in light blue as before. When the spectra are broadened by 132 

meV FWHM Voigt lineshapes, as before, the purple lines are obtained. Comparison of the stick 

spectra in panels 6(B) and 6(C) indicates that the addition of rotational structure leads directly to 

a very modest “broadening” of the spectrum, in the sense of formation of groups of closely-

clustered peaks associated with a single excited vibrational state. The magnitude of this 

rotational effect at room temperature may be determined by adjusting the experimentally-

motivated Lorentzian broadening used thus far until an optimum fit is obtained. Consequently, 

we estimate that quantized rotations are responsible for 3 meV of the experimentally-determined 

lifetime broadening for N2, and we estimate the pure lifetime broadening to be 112 meV. This 

value is in acceptable agreement with the value of 120 meV predicted from Auger lifetime 

calculations by Coville and Thomas, although we note that they treated the ionized rather than 

the bound system.
16

  

Although a discrepancy of 3 meV is very small indeed, it is nevertheless interesting to 

consider that N2 is a common benchmark system for determining beamline resolutions. In 

determining a Lorentzian/Gaussian decomposition of a given Voigt lineshape, a slight 

overestimate of the lifetime broadening corresponds to a slight underestimate of the instrument 

broadening. As a result, a more careful treatment of rotations might be of interest to the X-ray 

spectroscopy community.  
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We are not aware of any experimental studies of the N2 NEXAFS spectrum (or other 

molecules) at low temperature; given the negligible narrowing effect due to quenching of higher 

rovibrational states as the temperature is decreased, we think it unlikely that any will be 

performed soon. High-temperature experiments might be of interest, however: As contributions 

from ν > 0 become non-negligible, shoulders will appear that are of spacing identical to that 

observed in the ground state spectrum but with an additional energy shift of ΔEv0. A simple 

population analysis suggests that ν = 1 will first make a contribution of 10% or more at  ~1500K.  

One possible source of the discrepancy between our peak locations and heights and those 

observed experimentally is that we have neglected the Λ-splitting of the + and - components of 

the u

1  term with increasing J in computing our Franck-Condon spectrum.
31

 Although this 

effect will be on the order of fractions of a wavenumber for low values of J, it could be 

significant for the higher values included, growing as large as tens of wavenumbers (or larger). If 

the effect were strong enough for high J, contributions from orthonitrogen would disappear (as 

the rotational selection rule would prevent it from coupling to the symmetry-allowed  u

1  state). 

Even assuming that the  u

1  term were still near enough to degenerate with  u

1  that we could 

ignore its being symmetry-forbidden, we would have to add the J-dependent splitting (or 

combination defect) by hand, drawing values from an appropriate experiment.
31

 Thus, while it is 

possible that Λ-splitting might contribute, it is difficult to say what the effect of including it 

might be. 

 The most straightforward explanation of the peak location and height discrepancy we 

observe, however, is that the DFT ground- and excited-state potential geometries are different 

from those of the real physical states involved in the X-ray absorption process. Specifically, as 

mentioned previously, we would expect that our over-binding potential curves overestimate the 
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zero-point energy and the vibrational level spacing. The blue line in Figure 2 is the MLR4(6,8) 

ground-state potential developed by LeRoy et al. from fitting to experimental data for vibrational 

levels up to ν = 19; it compares favorably to configuration-interaction results obtained by 

Gdanitz.
32,33

 Comparison to our ground-state fit shows that the well is, in fact, slightly too 

narrow, although the overall geometry is quite similar. An analogous comparison may be made 

for the excited state: The blue line in Figure 3 is the Morse potential implicit in the spectroscopic 

constants for nitrogen reported by Chen et al.
6
; once again, our fitted curve is too narrow. 

 The results presented in Figure 7 address the question of how much improvement will be 

visible in the spectrum when a better-quality ground- or excited-state potential curve is used. 

Panel (A) is the same spectrum as in Figure 6(B), with both states those determined by our DFT 

calculations and subsequent fitting. Figure 7(B) substitutes the fitted Morse potential for the 

excited state curve, while Figure 7(C) involves the additional replacement of the ground-state 

potential by MLR4(6,8). 
6,32,33

 Perhaps surprisingly, the best fit to the experiment is obtained 

from the combination of the DFT ground state and the excited state given by Chen et al.; the 

peak locations are exceptionally accurate, and ratios between the heights of adjacent peaks are 

also in excellent agreement. (Of course, some improvement is to be expected, since an empirical 

fit must necessarily incorporate the “right answer,” in some sense.) Such is not true for the (in 

principle) superior combination presented in Figure 7(C), which improves the predicted peak 

locations but actually suffers by comparison to the purely DFT-derived spectrum with respect to 

the intensities. This unexpected reversal might be due to the fact that the excited Morse potential 

was determined without consideration of rotations, or it might be the result of fortuitous 

cancellation of errors when the Morse fit is combined with the DFT ground state. In any case, 

our constrained DFT approach leads to a reasonably good prediction.  
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4.  Concluding Remarks 

  In this article, we have shown that the NEXAFS spectrum can be predicted 

semiquantitatively using a combination of constrained density functional theory and exact 

methods for quantization of the nuclear motions. In the process, we have explored a hierarchy of 

models for the spectrum and established which of the salient features of the spectrum appear at 

each successively more accurate level of approximation. Specifically, we find that a sharply-

peaked onset will appear once the ground state has been vibrationally quantized; full Franck-

Condon structure is recovered on quantization of the excited state, unsurprisingly; and the 

addition of rotational quantization shows that there are associated very modest – but real – 

contributions to the intrinsic broadening of the spectrum. We have also addressed the possibility 

of non-trivial temperature dependence in the spectrum. Finally, we have shown that it is possible 

to improve the predicted spectrum by using constrained DFT in combination with more accurate 

potentials.  
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Figure and Table Captions 

 

 

Figure 1.   A schematic depiction of the three classes of transitions associated with our spectral 

models. The green arrow at left depicts purely classical transitions; the blue arrows in the center 

depict transitions from a quantized ground to a classical excited state; and the red arrows at right 

depict transitions from a quantized ground to a quantized excited state. See text for details. 

 

Figure 2. The electronic structure energies for the ground state in eV (red points) plotted with 

the 14-Gaussian fit (black) to the full region depicted. The inset between 0.9 and 1.6Å shows the 

quality of the fit for the bottom of the ground state well; rovibrational state 34,0  is deep within 

the well (0.435 eV). 

 

Figure 3. The electronic structure energies for the excited state in eV (red points) plotted with 

the 14-Gaussian fit (black) to the full region depicted. The inset between 1 and 1.5 Å shows the 

quality of the fit for the bottom of the excited state well; rovibrational state 34,6  lies at an 

energy of 403.8 eV. 

 

Figure 4.  Part (A) shows the experimental nitrogen K-edge NEXAFS (red – see text) and the 

spectra generated by transitions from classical curves using the classical density at 300K (black) 

and 0K (grey, dashed).  Note that the spectra are too narrow. Part (B) shows the experimental 

nitrogen K-edge NEXAFS and the spectra generated by transitions from classical curves using 

the quantum densities at 300K (brown).   The 0K spectrum is completely hidden by the 300K 

spectrum.   
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Figure 5.   Comparison of the experimental nitrogen K-edge NEXAFS (red – see text) and the 

spectra generated by transitions from a quantized ground state to a classical excited state at 300K 

(purple) and 0K (blue, dashed) with broadening of 1 meV.  

 

Figure 6.   Part (A) shows the experimental nitrogen K-edge NEXAFS (red – see text) and the 

spectrum generated by purely vibrational transitions from the ground to the excited state (blue 

sticks) broadened with a Voigt lineshape (purple). The 0K vibrational spectrum is 

indistinguishable from that for 300K. Part (B) shows the experimental nitrogen K-edge NEXAFS 

and the spectrum generated by rovibrational transitions from the ground to the excited state (blue 

sticks) broadened with a Voigt lineshape (purple) at 300 K .   Part (C) is the experimental 

nitrogen K-edge NEXAFS and the spectrum generated by rovibrational transitions from the 

ground to the excited state (blue sticks) broadened with a Voigt lineshape (purple) at 0 K.   In all 

cases the Voigt lineshape is 132 meV FWHM, and the Gaussian contribution is 38.4 meV 

FWHM. 

 

Figure 7.  Part (A) shows the experimental nitrogen K-edge NEXAFS (red – see text) and the 

spectrum generated by rovibrational transitions from the ground to the excited state (blue sticks), 

as defined by our Gaussian fits, and broadened with a Voigt lineshape (purple) at 300K. Part (B) 

shows the experimental nitrogen K-edge NEXAFS and the spectrum generated by rovibrational 

transitions from the DFT ground state potential to the Morse potential due to Chen et al. (blue 

sticks) and broadened with a Voigt lineshape (purple). Part (C) shows the experimental nitrogen 

K-edge NEXAFS and the spectrum generated by rovibrational transitions from the LeRoy et al. 
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ground state to the Morse potential due to Chen et al. (blue sticks) and broadened with a Voigt 

lineshape (purple). In all cases the Voigt lineshape is 132 meV FWHM, and the Gaussian 

contribution is 38.4 meV FWHM.
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